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Summary—The problem of determining the response of a rigid strip footing bonded to the
surface of a viscoelastic cross-anisotropic halfspace is considered. The footing is subjected to
vertical, shear and moment forces harmonically varying with time and uniformly distributed
across the longitudinal axis, so that plane strain conditions prevail. The solution is based on a2
transformation that uncouples the wave equations in closed-form and formulates the mixed
boundary condition in terms of the Green's functions for the halfspace. Characteristic results,
presented in the form of dynamic compliances as functions of frequency, demonstrate the
importance of the degree of cross-anisotropy and of the internal soil damping on the response.

NOTATION
A, B \/(plE,) dimensionless frequency parameter
B one-half of the foundation width
A(A), B(A) integration functions of the transform parameter A (equation 17)
D normalized dynamic compliance matrix (equation 1)
d vector of the three rigid body displacements of a foundation (equation 1)
Ey, Ey vertical and horizontal Young's moduli of the cross-anisotropic halfspace
F vector of the three resultant forces, referred to the centroidal axis Oy of a foundation
(equation 1)
Gyy shear modulus of soil on a vertical plane
H(x,2), N(x,z) wave potentials defined by equation (9)
L transformation matrix (equation 25)
n EH/ E\'
p(r) Fourier transform of p(x)
P,Q.R soil moduli defined by equations (3) and (5)
u, W displacements in the x, z direction
U(w) global flexibility matrix of dimensions 2(2m + 1) by 2(2m + 1) (equation 24)
* Ayps Boans Aun Ay horizontal, rocking, coupled horizontal-rocking and vertical compliances
€., € 7:: the three components of strain in plane strain deformation
vwy Poisson’s ratio for transverse strain in the horizontal direction due to a vertical stress
vqn Poisson’s ratio for transverse strain in the horizontal direction due to a horizontal
stress :
£ hysteretic damping ratio of the soil
p soil density
Our» Ouo 7 NOrmal and shear components of the stress tensor
@ circular frequency of excitation 1
8y, 8y, 6 horizontal, vertical displacement and rotation of rigid footing

Superscripts
- Fourier transformed parameter
= viscoelastic material constant

INTRODUCTION

The analysis of foundations continuously supported by soil and subjected to vibratory
loads constitutes an important branch of modern geotechnical engineering. Consider-
able research, especially in recent years, has focused in developing generalized
dynamic force-displacement relationships for rigid footings of circular, strip or
rectangular shape bonded to idealized soil media. Such relationships are needed in the
design of machine foundations the seismic analysis of soil-structure interaction and
the prediction of wave-induced oscillations of off-shore platforms and caissons.

For the particular case of long structures, such as dams, caissons, long rectangular
buildings, etc. it is appropriate to idealize the foundation as an infinite long strip. If the
dynamic loading is uniform along the longitudinal direction, plane-strain conditions
prevail throughout, and the steady state harmonic response of the foundation can be
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completely described through the compliance matrix D which relates the amplitudes
of the horizontal (8y), vertical (8,) and rotational (6) displacements with the am-
plitudes of the corresponding resultant forces (Fy, Fy, M) acting on the rigid footing:

' F,
Su| o |Amw Bmw 0|47
6-Bl =F|Bmn  Ban - 0lF (1a)
S, E 0. 0 A F.
or in compact form
d=lDF (1b)
E

in which E is a characteristic modulus of the soil and B is half the width of the
footing. The dimensionless dynamic compliance coefficients, Ayy, Aum, Aun and A,
are complex quantities with real and imaginary parts that are functions of the
dimensionless frequency parameter

wB
A= T Ep) (1c)
in which w is the circular frequency of vibration. (The “coupling” compliances Apy
and A,y are equal as can be shown by use of the dynamic reciprocity theorems [1]).
Determination of each compliance function, A(A), for a specific soil profile, calls for
the solution of a mixed boundary value elastodynamic problem. Several analytical,
numerical and analytical-numerical solutions have been published to date [2-7] all of
which idealize the soil as an elastic isotropic continuum.

However, there exists abundant experimental evidence [8-16] suggesting that most
natural soils and rocks posses a definite anisotropic character. This is because their
fabric is intimately related to the mechanical processes occuring during their for-
mation, which involves anisotropic stress systems. Thus, e.g. natural clay deposits
formed by sedimentation and, subsequently, one-dimensional consolidation over long’
periods of time acquire a fabric that is characterized by particles or particle clusters
oriented in a horizontal arrangement. This preferred orientation makes the clay 2
cross-anisotropic material with a vertical axis of symmetry. Similarly, fabric aniso-
tropy in sands arises from the infiuence of gravity forces and particle shape on the
deposition process, while in rocks the anisotropy may result from the anisotropy of
forming minerals and/or micro- or macro-fabric features [15].

Since the number of elastic parameters required to describe the behaviour of a
cross-anisotropic medium increases from 2 to 5 and “the basic equations are far more
complicated than for isotropic materials. .. [17], few attempts have been made to
incorporate material cross-anisotropy in mixed boundary value elastodynamic prob-
lems. A particular difficulty with such materials stems from the fact that the differen-
tial equations of motion do not, in general, uncouple into classical dilatational and
shear wave equations, as in the case of isotropic media. Thus no closed-form
solutions can be obtained for stresses or displacements in an unbounded medium.

To overcome this difficulty, Carrier [18] in 1946 constrained the elastic anisotropic
parameters to satisfy the relation

(P-Gyy)(R-Gvy)=(Q+ Gvu ) )

where P, Q, R, Gyy are defined in equations (3) and (5). The sixth order partial
differential operator associated with the motion of such a constrained cross-anisotro-
pic medium can then be factorized into three second-order operators, whereby
analytical solutions can be obtained using, e.g. integral transform techniques [19]).
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Relationship (2) has been subsequently adopted by Cameron and Eason [20] and
Payton [21] who evaluated the displacement field due to a concentrated source
suddenly applied at a point in an infinite cross-anisotropic elastic solid. More recently,
Kirkner [22) studied the dynamic behaviour of rigid circular plates bonded to the
surface of a cross-anisotropic elastic or viscoelastic half-space whose material con-
stants satisfied the constraint relationship (2). He considered vertical, horizontal and
rocking vibrations and formulated the problem so that one stress vanished over the
entire plane surface (“relaxed” boundary) while an oscillating displacement was
prescribed in the loaded region. Each case led to a mixed boundary value problem
represented by dual integral equations which were reduced to a single Fredholm
integral equation and solved numerically. Note, finally, that equation (2) was also
employed by Valliappan et al. [23] in order to obtain dashpot constants of an *“‘energy
absorbing™ boundary that was incorporated into a plane-strain dynamic finite-element
formulation aimed at studying the response of strip foundations on Cross-anisotropic
soils. '
- Clearly, establishment of equation (2) was motivated solely by the ensuing
mathematical convenience, with very little consideration of its physical reality.
. Hence, it is rather fortunate that significant experimental evidence has come to
support its validity for soils. Recently, the author has found that equation (2) is
satisfied with sufficient accuracy by the elastic properties of a variety of soils,
including the overconsolidated London clay [8, 14], normally consolidated kaolinitic
and illitic clays [9, 12, 25] some sensitive clays [16], sands [15] and clay shales [15].
(Details of this important corroboration can be found in Refs. [24, 32].) Consequently,
idealizing the soil as a constrained cross-anisotropic medium is undoubtedly justified.
In this paper an analytical-numerical method is presented to obtain the dynamic
compliance matrix of a rigid strip footing bonded to the surface of a cross-anisotropic
viscoelastic halfspace having a vertical axis of symmetry (Fig. 1). A formulation in
terms of Green's functions for the halfspace is used instead of the more conventional
dual integral equation approach, since the latter can only treat the relaxed (‘“smooth™)
boundary (as was done, e.g. in [3, 22]). Note that Luco and Westman [4] formulated
the corresponding problem for the isotropic halfspace also in terms of the Green's
functions, which were then used to obtain pairs of coupled Cauchy-type integral
equations that were reduced to coupled Fredholm integral equations and solved
numerically for a Poisson’s ratio equal to 1/2 (incompressible medium). To avoid the
mathematical difficulties of the above approach (which would certainly become even
greater with a cross-anisotropic material) a somewhat different procedure is followed
herein. Dynamic flexibility influence coefficients, defined for uniformly spaced nodal
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Fic. 1. Diagram of footing, coordinate system and surface discritization.
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points at the surface, are obtained from solutions of two boundary value problems
associated - with harmonically time-varying normal or shear stresses uniformly -dis-
tributed around a nodal point. Numerical evaluation of these coefficients is ac-
complished through a fast Fourier transform (FFT) algorithm, as was done in Ref. [6]
for isotropic material and the dynamic compliance matrix of a rigid footing is
subsequently evaluated by imposing the conditions of rigid body motion to the nodal
points at the soil-foundation interface. Characteristic results of the method are
presented in the form of plots of the four dynamic compliances versus a dimension-
less frequency factor and clearly demonstrate the significance of cross-anisotropy on
the response of foundations.

THE STRESS-STRAIN RELATIONS

Let the axis 0z, which is normal the the plane surface z = 0 of the half space z = 0, be the axis of n-fold
symmetry for the material. The horizontal planes paraliel to Oxy are then plans of isotropy and if Oy is the
logitudinal axis of the infinitely long footing (as in Fig. 1), the elastic stress-strain relations appropriate to
plane strain deformation in the (x, z)-plane are (see, e.g. [26])

Ox = Pe, + Qe (3a)
0.,=Qe,+Re, (3b) .
Te: = GVH Vxz s (35)

where the components of strain are defined in terms of the displacement components (u, w) in the
directions Ox and 0z by

€ = Uy € = Woil Ve = U W @)

The parameters P, Q and R are related to the Poisson’s ratios vyy, vy and Young's moduli Ey, Ey by
the expressions

P=E2 (=i _ (5a)
Q=£a‘il’vn (I + vyy) 5 (5b)
R=EL(-13 : (5¢)

2 Ey
a=(1+Vun)(1“i‘nn‘2m’vu)iﬂ‘E; » (5d)

while Gyy = Gyv is the shear modulus in the vertical plane xz. Notice that equation (2) can be used to
obtain Gyy in terms of the four independent material constants, vyy, Vun, Ey and Eg. The latter, however,
cannot take arbitrary values as they are restricted by thermodynamic considerations [14, 24, 26] to satisfy,
in general, the following inequalities: :

-1<VH"<1-2HV2V}{ (63)

o ?/17 (6b)

Furthermore, for an incompressible material, an additional limitation is that [14]
n=4. (6¢)
It is worth noting that although n = 1 is a necessary condition for this medium to respond isotropically, this
alone is not sufficient; an additional requirement is that vyy = vy or that Gyy = Ev/2(1 + vyy).

The constitutive equations for a simple viscoelastic anisotropic material can be obtained from equations
(3) if the material constants, P, Q, R and Gyy, are replaced by complex moduli of the type

LS
* - e S
S —S(|+lws) (7a)
for a Voigt solid, or of the type
S* = S(1 +i2&) (7b)

for a constant hysteretic solid. S’ are viscocity constants and £ are damping constants-independent of
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frequency, corresponding to modulus S = P, Q, R or Gyy. Since the internal dissipation of energy in soils
is, within the range of engineering interest, essentially independent of the frequency of excitation [27], only
the second viscoelastic model (constant hysteretic solid) is considered in the sequel. The simplify the
problem it is assumed that

£P=50=&=€Gvn=f- (7C)

Equation (7c) leads to Poisson’s ratios, vyy and vyy, and ratio of Young s moduli, n, that are real numbers,
independent of the hysteretic damping, ¢ ;

GOVERNING EQUATIONS AND SOLUTION

For conditions of plane strain, and a harmonic time variation e* of ¥ and w, the Navier-type equations
governing the motion in a cross-anisotropic viscoelastic medium are (see, e.g. [28])

P* Uy + Gy ity +(Q*+ G ) Wy = = poiu (8a)
GVl Wass + R* W, +(Q* + G ) Uy = = po®w. (8b)

To uncduple equations (8), we define a pseudo-dilatational and a pseudo-distortional wave potential,
N(x,z) e* and H(x, z) e* related to the displacements u and w as follows [22):

u=N,+bH, (%a)
w=bN,-H, (%b)
where
=Gy
-gron o

By combining equations (2) and (10), it can easily be shown that

Q+GVH Gvy
R ik Bl an

Substituting equations (9) in (8), while accounting for (10) and (11), leads after some straight-forward
operations to the following equations:

3 (P Gvn e’ d el

= ( 2 N N,,,) 5 Hat Ha)b S = - B0 = (N) - (bH) (122)
ozt § Gun_ _p’d ﬁ-'__.

= ( £ N * N,,,) = Ha+ Ha) = - B = bN)+ 5 (H) (12b)

Equations (12) are directly reduced to two uncoupled equations in terms of N and H:

%N,.,-w., =-hN (132)
H,.+H,=-kH (13b)

where
h?= pw*R*, k*=pw*GVyy. . (14)

It is easier to solve equations (13) by transforming them into ordinary second-order differential
equations in only the variable z, after introducing the complex Fourier transform of the dependent
variables:

N, z)= rvN(x, z) exp (iAx) dx ' (152)

AQ,x)= f " B 9 exp (hx)dx, (15b)

Applying equations (15) to (13) transforms the partial differential equations to

2 N -
‘Lf"-(zp-h’)Nw (162)
@A 5
_ dE W=k H=0 (16b)
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which present a convenient formulation of the governing differential equations. Considering the fact that as
the depth of the medium, z, becomes infinite the transforms of all response quantities vanish identically, the
general solution of equations (16) is

N = A(\) exp (- a,2) (17a)
H = B(A)exp (- a,2) (17b)

where A(A), B(A) are arbitrary functions of the transform parameter A to be determined from the boundary
conditions, and

al=<A*-p? (18a)

ad= A= [? (18b)
with Re[a,] > 0 and Re[a,] > 0.

SOLUTION OF TWO BOUNDARY VALUE PROBLEMS—FLEXIBILITY INFLUENCE
COEFFICIENTS

Dynamic flexibility influence coefficients are defined as the frequency dependent displacements at any
point on the surface of the soil due to a harmoninally varying with time unit vertical or unit horizontal line
load applied at the origin, x = 0. Only the formulation for the first boundary value problem (applied vertical
load) is outlined herein, since the formulation of the second problem is completely analogous.

The transformed boundary conditions at the surface (z = 0), when 2 normal traction p(x) is centered at
the origin of coordinate axes, are

6,(A,0)=p(A)= f‘ p(x)exp (iAx) dx (19a)

7(,0)=0 (19b)

where G,. and 7, denote the complex Fourier transforms of normal and shear stresses acting on the
surface. Using equations (3), (4), (7), (9) and (17) and taking into account the well known properties of the
Fourier transforms [19), it is found that

Gz (A, 2) = (a1 bR* = A*Q*)A(A) €™ = iAa; (R* - bQ*) B(A) e~ (20a)
Tu (A, 2) = ia)A(1+ b)GYy A(A) €™ + (bai+ A*)Gyy B(A) e~ (20b)

Substitution of (20) into (19) yields the two integration functions A(A) and B(A) that define the wave
potentials N(A, z) and H(A, 2); the transformed displacements U(A, z), W(A, 2) are then derived from (9).
By applying the inverse Fourier transform to U(A,0), W(A, 0) the surface displacements are obtained:

ba%+l2- a,a, b(1+ b)e-m da

u(x, d)=-§ f_: ABQA) oy @1a)

a (" b(ba3+ A>)—A%(1+b) _ .
w(x, 0)=2ﬂ 'Lﬁ(A) JZEY) e~ da (21b)
in which

F(A) = A%ayax(1+ b)- (R* - bQ*) - (ba3+ A% - (baiR* - A2Q"%) (22)

is the Rayleigh function for the cross-anisotropic halfspace. It is interesting to notice that equation (22)
reduces to the Rayleigh function of the isotropic halfspace (see, e.g. [1 or 28)), in the special case of n = 1
and vyy = vyy =v, i.c. when the medium behaves isotropically. Indeed, in such a case s

= -Q-L.%_ 1-20 TR e
P R'R—l—v' R —Z(I—v)'b 1; ai=A?-h

and it is a simple matter of albebra to show that equation (22) takes the form
F(A) = G*[4A%a,a,- (2A% - k*)) (23)

i.e. simplifies to the isotropic Rayleigh function [1, 28).

Note, furthermore, that equation (23) agrees with the Rayleigh function determined by Kirkner [22] for a
similarly constrained cross-anisotropic half-space [his equation (2.24)).

The numerical scheme proposed in Ref. [6] for isotropic layered media has been adopted herein to
evaluate u(x,0) and w(x,0) from equations (21). The soil surface z =0 is represented by a set of M
equidistant points at which displacements (flexibility coefficients) are to be determined for a unit normal or
shear pulse centered at point O. Taking M to be a power of 2 (e.g. 256, 512, or 1024), a discrete Fast Fourier
Transform (FFT) algorithm [29] can be used in place of the integrals (19a) and (21). Details on the accuracy
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of the technique and the requirements for obtaining efficient solutions (minimum value of M, appropriate
spacing between nodal points) can be found in Ref. [6). Note that, recently, Dasqupta and Chopra [7]
employed a somewhat similar procedure to evaluate the dynamic flexibility coefficients associated with a
viscoelastic isotropic halfspace; however, they performed a direct numerical evaluation of the correspond-
ing integrals using Simpson’s rule rather than utilizing a FFT algorithm.

EVALUATION OF COMPLIANCE MATRIX FOR RIGID FOOTING

For the problem at hand the foundation-soil interface is represented by 2m +1 (m = integer) of the M
equidistant surface grid points, as shown in Fig. 1. Having determined, as outlined above, the dynamic
flexibility influence coefficients due to a normal or shear unit stress pulse acting at the origin, one can
readily assemble a global flexibility matrix U(w) dimensions 2(2m +1) by.2(2m + 1) relating the two
displacement components with the two force components acting at each node under the foundation. Notice
that the computations need not be repeated for each point since, as the applied traction moves from the
origin O to another point, the displacements at all points just shift by the same amount. Calling U and P the
22m + 1) by 1 vectors of nodal displacements and nodal forces, one can write:

u=U(w)P. (24)

Jmposing now the condition of rigid body motion for the foundation, the displacements of the mesh
points, u, are related to those of the corresponding centroid, d by the transformation

n=Ld (25)
with

LT - [lo. .o l,'. .o l;,,,¢1] (253)

10
I;= 0 x; (25b)
0 1

where x; is the distance of the i nodal point from the origin.
The resultant forces on the foundation (Fy, M, Fy) can be obtained from the forces applied at the nodal
points, P, by the relationship

and

F=L"P (26)

Elimination of u and P from equations (24)~(26) and use of equation (1) leads to the desired dynamic
compliance matrix

D=E,L'U(w)L")" 27

if the Young's modulus in the vertical direction Ey, is chosen as the “characteristic” modulus in equations
(1), as was done in the parametric studies reported next.

RESULTS

Figs. 2-9 present the dynamic compliances Asy, Asm, Auy and Ay as functions of the dimensionless
freequncy factor, Ay = wB \/(p/Ey), for 2 medium which exhibits zero volumetric strain upon loading.
Such an “‘incompressible™ material is of particular interest to geotechnical engineers concerned with
estimating foundation settlements caused by structural loads during or immediately after the construction
period. Since clays are fully saturated with water, this so-called “immediate” settlement takes place before
“consolidation” due to expulsion of water from the pore space can occur. As any water-solid mixture is
essentially incompressible relative to a (porous) grain skeleton, the immediate displacements occur with
practically no volume change.

Using equations (3)~(5), it is seen that in order for the volumetric strain, €, = exx + €yy + €2z, t0 be zero
regardless of imposed stresses, the following conditions should be met (see, also, Ref. [14, 24, 30))

vy =% and v,m=1—%n. (28)

Thus, a single parameter, the ratio n = E,/Ey, can fully describe the degree of anisotropy of the material.
Typically, n may vary between 0-6 —2-0 [8-16, 24), although more extreme values have also been reported
in a few cases [15].

Figures. 2-5 portray the effect of n on the four compliance functions associated with a rigid strip
bonded to a halfspace characterized by a hysteretic damping ratio £ = 0-05. Both real and imaginary parts
are plotted, for Ay values up to 4-0. The following conclusions can be drawn:

(a) As the ratio of horizontal to vertical modulus, n, increases, the halfspace becomes stiffer and the
near static (i.e. for Ay —0) compliances decrease. However, this is not always true at higher frequencies,
especially with modes of vibration that produce primarily compressional waves (vertical, rocking). At the
limit n =4 the halfspace becomes infinitely rigid and all compliance functions vanish, a result aiready
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Fic. 2. Horizontal compliance for incompressible soil (¢ = 0-05).

|.5 n

0.333
. —— = 0,667
| "N\ : —————e—ee | ([ 1S0TROPIC )

FiG. 3. Rocking compliance for incompressible soil (§ = 0-05).
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FiG. S. Vertical compliance for incompressible soil (¢ = 0-05).
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Fic. 7. Effect of soil damping on rocking compliance (incompressible soil, n = 1/3).
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FIG. 8. Effect of soil damping on coupling compliance (incompressible soil, n = 1/3).

-

Fic. 9. Effect of soil damping on vertical compliance (incompressible soil, n = 1/3).
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known for static loading from Gibson [14.30], but also anticipated in view of the fact that as n—4
Gyyl Ev > =, i.e. the material becomes irrotational in addition to being incompressible.

(b) Both Ayy and A, display similar asymptotic behaviour for each particular value of n. with their real
parts tending to infinity as A, tends to zero. This is in agreement with classical theory of elasticity
according to which one can only specify the surface settlement of a strip loaded halfspace to within an
arbitrary displacement [31]. Notice, however, the fast decrease of Redy, and ReA, with A,. The
corresponding imaginary parts start at a finite “static” value and exhibit a much slower decay with
frequency.

The rocking compliances behave differently: their real parts start at a finite static value while the
imaginary start from almost zero. This suggests that stresses in a half-space due to moment surface loading
are confined to near surface soil with little or no radiation of energy away from the load.

(c) The isotropic halfspace is indeed recovered for n = 1; the corresponding compliance functions are in
excellent agreement with those reported by Luco and Westman [4].

The influence of the hysteretic soil damping, as demonstrated with Figs. 6-9, is of rather secondary
importance, relatively speaking. Reducing the damping factor from ¢ = 5% to ¢ = 1% (a value admittedly
very low for most practical geotechnical applications) has mainly two effects: It slightly increases the real
components of the compliances while at the same time it decreases their imaginary parts. These effects are
most pronounced in case of rocking. especially at the low frequency range.

CONCLUSIONS

The dynamic force-displacement relationships for harmonic motion of a rigid strip
footing perfectly bonded to the surface of a viscoelastic cross-anisotropic halfspace
have been obtained. The presented solution is analytical in the sense that it is based
on a closed-form solution of the governing Navier-type equations for an anisotropic
medium. It is also partly numerical in that it determines dynamic flexibility influence
coefficients for a set of uniformly spaced nodal points at the surface, by employing a
discrete fast Fourier transform technique. An interesting feature of the procedure is
that it can be extended to the more general case of a halfspace consisting of any
number of cross-anisotropic layers with little additional effort (an attempt already
underway on which the Author hopes to report shortly).

Results are presented in the form of dimensionless compliances as functions of a
dimensionless frequency factor for the interesting case of an incompressible half-
space, which simulates the behaviour of deep clay deposits under “undrained™ loading
conditions. It is found that, throughout the frequency range examined. the degree of
anisotropy may have a profound effect on the dynamic response of foundations. Thus.
for a value of the horizontal-to-vertical Young’s modulus ratio, Ey/E, = 2, which is
typical, e.g. for the heavily overconsolidated London clay, the resulting foundation
displacements may be about 30-40% lower than for an isotropic medium (E4lEy=1).
At high frequency factors, on the other hand, this relation between isotropic and
anisotropic displacements is sometimes reversed; thus, in practical situations, careful
assessment of the exact effect of anisotropy should be made for the particular
frequency range of interest. The effect of soil damping is shown to be of, relatively,
secondary importance; in practice, therefore, it is sufficient to obtain a rough estimate
of its magnitude on the basis of available empirical data. The reader is cautioned, at
the same time, that this may not be true in case of a shallow soil deposit underlain by
a rigid, rock-like material; judging from relevant studies with isotropic soils [5,6], it is
anticipated that high damping in such cases would help ameliorate the effect of
resonance phenomena that usually take place.
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